DSpace
Зареєструватися
українська русский English polski français
Deutsch español italiano svenska
中文 Ελληνικά norsk
日本語 magyar
čeština
   

ELARTU — Інституційний репозитарій ТНТУ імені Івана Пулюя >
Факультет прикладних інформаційних технологій та електроінженерії (ФПТ) >
Кафедра математичних методів в інженерії (МН) >
Навчальна література кафедри математичних методів в інженерії >

Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://elartu.tntu.edu.ua/handle/123456789/17886

Назва: Теорія функцій комплексної змінної. Конспект лекцій
Автори: Валяшек, Володимир Богданович
Бібліографічний опис: Валяшек В.Б. Теорія функцій комплексної змінної. Конспект лекцій для студентів технічних спеціальностей усіх форм навчання. / Кривень В.А., Валяшек В.Б., Каплун А.В., Ясній О.П. – Тернопіль : в-во ТНТУ, 2015. – 87 с.
Дата публікації: 2015
Видавець: Видавництво ТНТУ
Кількість сторінок: 86
Короткий огляд (реферат): Теорія функцій комплексної змінної (ТФКЗ) має численні застосування в теорії пружності, термодинаміці, електротехніці і радіотехніці тощо. Апарат ТФКЗ придатний для дослідження та обчислення дійсних інтегралів, рядів, рівнянь, а також для розв’язування багатьох інженерних задач. Ефективним при розв’язуванні диференціальних рівнянь, в тому числі з частинними похідними, є застосування операційного числення - одного з методів теорії функцій комплексної змінної. Саме тому заключним розділом у циклі математичних дисциплін для майбутніх інженерів є ТФКЗ. Пропонований конспект лекцій допоможе студентам технічного університету опанувати курс теорії функцій комплексної змінної та елементів операційного числення в обсязі, достатньому для застосування як до теоретичних досліджень, так і до важливих практичних задач. Виклад матеріалу ілюструється численними прикладами, зразками їх розв’язування. Конспект лекцій розрахований на студентів інженерно-технічних спеціальностей вищих технічних навчальних закладів.
Опис: Методичні вказівки розглянуто й схвалено на засіданні кафедри математичних методів в інженерії (протокол No7 від 20.01.2015р.) Рекомендовано до друку методичною радою факультету комп’ютерно-інформаційних систем і програмної інженерії (протокол No6 від 3 лютого 2015р.)
Зміст: Лекція 1 Комплексні числа 6 1.1 Комплексні числа та дії над ними 6 1.2 Геометричне зображення комплексних чисел 8 1.3 Послідовності та числові ряди комплексних чисел 11 1.4 Нескінченно віддалена точка. Сфера Рімана 13 1.5 Множини точок на площині, область, лінія 14 Лекція 2 Комплексна змінна. Аналітичні функції 17 2.1 Поняття функції комплексної змінної 17 2.2 Диференціювання функції комплексної змінної 19 2.3 Умови Коші – Рімана 21 2.4 Геометричний зміст модуля та аргумента похідної. Конформні відображення 23 Лекція 3 Елементарні аналітичні функції 26 3.1 Ціла лінійна функція 26 3.2 Степенева функція з натуральним показником 26 3.3 Функція Жуковського 28 3.4 Показникова функція 31 3.5 Тригонометричні та гіперболічні функції 32 3.6 Дробово-лінійна функція 34 Лекція 4 Многозначні функції 38 4.1 Поняття многозначної функції. Вибір однозначної вітки 38 4. 2 Приріст многозначної функції . Приріст аргумента 40 4.3 Корінь п-го степеня 42 4.4 Логарифм 44 4.5 Інші елементарні многозначні функції 45 Лекція 5 Інтегрування 47 5.1 Визначений інтеграл 47 5.2 Властивості визначеного інтеграла 47 5.3 Інтегральні теореми Коші 49 5.4 Інтеграли типу Коші 51 5.5 Інтегральна формула Коші 52 Лекція 6 Первісна. Гармонічні функції 54 6.1 Первісна 54 6.2 Теореми Морери і Гурса 57 6.3 Гармонічні функції 59 Лекція 7 Функціональні ряди 60 7.1 Означення. Теорема Вейєрштрасса 60 7.2 Степеневі ряди 62 7.3 Узагальнені степеневі ряди 63 7.4 Ряди Лорана 64 7.5 Ряди Тейлора 66 Лекція 8 Нулі та ізольовані особливі точки 68 8.1 Нулі аналітичних функцій 68 8.2 Ізольованість нулів 69 8.3 Ізольвані особливі точки однозначного характеру 70 8.4 Усувна особлива точка 70 8.5 Полюс 71 8.6 Істотно особлива точка 72 8.7 Принцип максимуму модуля 73 8.8 Підіймальна сила крила 74 Лекція 9 Теорія лишків 76 9.1 Означення та формули для обчислення лишків 76 9.2 Основна теорема про лишки 77 9.3 Обчислення інтегралів від тригонометричних функцій 78 9.4 Обчислення невласних інтегралів 79 9.5 Лема Жордана та її застосування 81 9.6 Обчислення інтегралів за допомогою вибору однозначної вітки 83 9.7 Логарифмічний лишок. Принцип аргумента. 84 Перелік використаних джерел 86
URI (Уніфікований ідентифікатор ресурсу): http://elartu.tntu.edu.ua/handle/123456789/17886
Перелік літератури: 1 Привалов И.И. Введение в теорию функций комплексного переменного. – М.: Наука, 1984. – 432 с. 2 Маркушевич А.И. Краткий курс теории аналитических функций. – М.: Наука, 1978. – 416 с. 3 Гольдберг А.А., Шеремета М.М. Аналітичні функції: Навчальний посібник. – К.: УМК ВО, 1991. – 116 с. 4 Лаврентьев М.А., Шабат Б.В. Методы теории функций комплексного переменного. – М.: Наука, 1987. – 736 с. 5 Горгула В.І., Сікора Б.С., Волковецький С.В. Теорія функцій комплексної змінної і операційне числення: Навчальний посібник. – Івано-Франківськ: ІФДТУНГ, 1998. – 80 с. 6 Шабат Б.В. Введение в комплексный анализ. Ч. I. Функции одного переменного. – М.: Наука, 1985. – 336 с. 7 Араманович И.Г., Лунц Г.Л., Эльсгольц Л.Э. Функции комплексного переменного. Операционное исчисление. Теория устойчивости. – М.: Наука, 1968. – 574 с.
Розташовується у зібраннях:Навчальна література кафедри математичних методів в інженерії

Файли цього матеріалу:

Файл Опис РозмірФормат
TFKZ__COVER.png56,69 kBimage/pngЕскіз
Переглянути/Відкрити
TFKZ.djvu1,52 MBDjVuПереглянути/Відкрити
TFKZ.pdf795,13 kBAdobe PDFПереглянути/Відкрити
TFKZ.docx2,29 MBMicrosoft Word XMLПереглянути/Відкрити

Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.

 

Програмне забезпечення DSpace Авторські права © 2002-2005 Массачусетський технологічний інститут та Х’юлет Пакард 
Зворотний зв’язок
Якщо Ви знайшли помилку, або інформація на сайті неточна — натисніть „Ctrl+Enter“ та виправте неточність. Дякуємо! Система Orphus